Materials Research Center at Missouri S&T

Bill Fahrenholtz
Missouri University of Science and Technology
billf@mst.edu
MRC History

• Started in 1964 by Prof. Bill James and Dean Ted Planje
• Building completed 1967, renovated 2011-2012
 – Renovation funded by campus ($2.2M) and NSF ($1.8M)
 – Renamed Straumanis-James Hall (SJH) in 2011
• Core funded center, evaluated based on return on investment
• Annually >$7M shared credit expenditures
• ~70 faculty, ~90 grad students, ~5000 samples run, ~20 external users
 – Majority of campus patents and royalty income
• Maintains materials analytical equipment (AMCL)
 – Housed in SJH and McNutt Hall; ~$10M equipment inventory
• Sr Investigators: 10 senior faculty with distinguished records as internal advisory panel
MRC Mission

• Enable the success of materials research and graduate education
 – Acquire and manage major research instrumentation
 – Facilitate collaborative proposals and projects
 – Advocate for materials research on campus and off

• Major resources
 – Straumanis-James Hall
 – Technical and administrative staff
 – Senior investigators and research investigators
 – Equipment
Straumanis-James Hall
Research Investigators

Chemistry
- Dr. Amitava Choudhury
- Dr. William James
- Dr. Garry Grubbs
- Dr. Vadym Mochalin
- Dr. Manashi Nath
- Dr. Tom Schuman
- Dr. Lia Sotiriou-Leventis
- Dr. Risheng Wang
- Dr. Jeff Winiarz

Chemical & Biochemical Engr
- Dr. Sutapa Barua
- Dr. Douglas Ludlow
- Dr. Monday Okoronkwo
- Dr. Fateme Rezaei
- Dr. Ali Rownaghi

Civil & Architectural Engr
- Dr. Mohamed Elgawady
- Dr. Hongyan Ma
- Dr. John Myers
- Dr. Guney Olgun
- Dr. Chenglin Wu

Chemistry
- Dr. Ian Ferguson
- Dr. Jie Huang
- Dr. Chulsoon Hwang
- Dr. Chang-Soo Kim
- Dr. Dong-Hyun Kim

Geosciences, Geological and Petroleum Engr
- Dr. Baojun Bai
- Dr. David Borrok
- Dr. Abdulmohsin Imqam
- Dr. Marek Lcmealis
- Dr. Mingzhen Wei
- Dr. Wan Yang

Materials Science & Engr
- Dr. Delbert Day
- Dr. Fatih Dogan
- Dr. Aditya Kumar
- Dr. Simon Lekakh
- Dr. David Lipke
- Dr. Scott Miller
- Dr. Michael Moats

Electrical & Computer Engr
- Dr. Joseph Newkirk
- Dr. Matt O’Keefe
- Dr. Darrell Ownby
- Dr. Jeffrey Smith
- Dr. Jeremy Watts
- Dr. Haiming Wen

Mechanical & Aerospace Engr
- Dr. Douglas Bristow
- Dr. Jie Gao
- Dr. Frank Liou
- Dr. Heng Pan
- Dr. Jonghyun Park

Mining & Nuclear Engr
- Dr. Lana Alagha
- Dr. Carlos Castano
- Dr. Grzegorz Galecki
- Dr. Joseph Graham
- Dr. Josh Schlegel
- Dr. Guang Xu

Physics
- Dr. Aleksandr Chernatynskiy
Materials Research Center (MRC) and Advanced Materials Characterization Laboratory (AMCL)

Director of MRC
Dr. Bill Fahrenholtz (billf@mst.edu)

Director of AMCL
Dr. F. Scott Miller (smiller@mst.edu)

Materials Research Center FY 19 Research Numbers
- **Number of Faculty**: 70+
- **Number of Students**: 75+
- **Research Expenditures**: ~$7,000,000

MRC Research Areas
- Advanced Structural Ceramics
- Corrosion and Coatings
- Electrodeposition/Photocatalysis
- Sensors and MEMS Devices
- Glass
- Integrated Computational Materials Engineering (ICME)
- Steels and Metallic Alloys (Peaslee Steel Center)
- Electromagnetic Compatibility (EMC Lab at Hypoint)
- Primary Metals Production

Research Areas
- **Electron Beam Lithography**
 - Raith eLINE Plus
 - Ultra-high resolution patterning (sub-5 nm lines in resist, sub-7 nm lines using e-beam deposition)
 - Four nanomanipulators for in-situ nanoprobing and nanoplotomtry
 - Gas injection system for deposition, etching or 3D nanosculpturing

Scanning Electron Microscopy
- Helios NanoLab 600 FIB-SEM
 - 1.0 nm electron resolution
 - 5.0 nm ion beam resolution

Transmission Electron Microscopy
- Tecnai F20 STEM
 - 0.24 nm TEM point resolution
 - 0.19 nm STEM resolution

Atomic Force Microscopy
- Nanoscope IIIA
 - Atomic force microscope (AFM)
 - Reconstructs images
 - Sub-nanometer increments

X-ray Photoelectron Spectroscopy
- Kratos Axis 165 XPS
 - Surface Chemistry and Depth Profiling
 - Elemental & Binding Energy Identification

X-ray Diffraction
- PANalytical X'Pert Multipurpose Diffractometer
 - Temperatures up to 1600°C
 - 15 sample changer

X-ray Fluorescence
- Oxford Instruments X-Supreme 8000
 - Benchtop instrument suitable for a wide variety of sample types
 - Covers elements Na to U

Thermal Analysis
- TA Instruments SDT Q600
 - Measurement of Tg, specific heat, phase changes
 - Simultaneous TGA/DSC
 - Temperatures up to 1600°C
 - Transition temperatures and exothermic/endothermic reaction processes

Electron Beam Lithography
- Raith eLINE Plus
 - Ultra-high resolution patterning (sub-5 nm lines in resist, sub-7 nm lines using e-beam deposition)
 - Four nanomanipulators for in-situ nanoprobing and nanoplotomtry
 - Gas injection system for deposition, etching or 3D nanosculpturing

Electron Beam Lithography
- PANalytical X'Pert Materials Research Diffractometer
 - Thin Film Diffraction
 - Texture Analysis

X-ray Fluorescence
- Oxford Instruments X-Supreme 8000
 - Benchtop instrument suitable for a wide variety of sample types
 - Covers elements Na to U

Thermal Analysis
- TA Instruments SDT Q600
 - Measurement of Tg, specific heat, phase changes
 - Simultaneous TGA/DSC
 - Temperatures up to 1600°C
 - Transition temperatures and exothermic/endothermic reaction processes
FIB/SEM and TEM (Open position)

B-18 McNutt,

EBSD texture analysis of AM-fabricated aluminum
Dr. Leu, ISC & Dept. of ME

TEM and APT sample preparation

Micro-slotting technique for stress measurement
Dr. Newkirk, Dept. of MSE

High T corrosion of steel automotive components
Dr. Lekakh, PSMRC & Dept. of MSE; Ford Corp.; ORNL
Raith eLINE Plus (Dr. Clarissa Wisner)

Electron beam lithography (EBL or e-beam lithography) technique used to create the smallest features (~5 nm). A tightly focused beam of electrons exposes a pattern in a resist. The resist can then be developed. Pattern transfer can be completed either by etching and resist removal or evaporating a metal onto the resist and dissolving the remaining unwanted metal and resist.

- **Ultra-high resolution patterning** (sub-5 nm lines in resist, sub-7 nm lines using e-beam deposition)

- **Gas injection system** for deposition, etching or 3D nanosculpturing

- **Four nanomanipulators** for in-situ nanoprobing and nanoprofilometry

Precise manipulation of EBID nanostructures
A. Linden, Raith inhouse

Clarissa Wisner
B-18 McNutt
cvierret@mst.edu
XPS and XRF (Brian Porter)

- ThermoFisher NEXSA
 - Surface chemistry and depth profiling
 - Detection Li to U
 - Up to 8 nm penetration depth
 - In-situ Raman spectrometer
 - Being installed this week

- Oxford X-Supreme 8000 XRF
 - Benchtop instrument suitable for a variety of sample types
 - Detection from Na to U
 - Up to 10 µm penetration depth
 - Can be operated by researchers

Brian Porter, G4 SJH, porterbj@mst.edu
Everything Else (Dr. Eric Bohannan)

• PANalytical MRD XRD
 – Thin film, pole figures, X-ray reflectivity, etcetera

• PANalytical MPD XRD
 – 15 sample changer available
 – SAXS attachment
 – Up to 1500°C reliably

• TA DSC 2010
 – From liquid N$_2$ to 600°C
 – Ramp up only, no controlled cool

• TA Q600 SDT
 – Simultaneous DSC/TGA
 – Up to 1500°C

Eric Bohannan, G6 SJH, bohannan@mst.edu
Everything Else (Dr. Eric Bohannan)

• Hirox KH-8700 3D Digital Optical Microscope
 – Surface roughness and imaging for non-transparent/reflective samples
 – Bring a flash drive; not networked

• DI Scanning Probe Microscope
 – AFM mode is fully functional
 – Surface roughness and texture
 – Modulus
 – STM mode is not working

• Hitachi TM-1000 Tabletop Scanning Electron Microscope
 – 20-10,000X
 – Sample sizes up to 70mm in diameter and 20mm thickness
 – No EDS

Eric Bohannan, G6 SJH, bohannan@mst.edu
Other New Instruments

- PRISMA-E Color SEM
 - Variable pressure SEM
 - High/low vac modes
 - EDS, EBSD, and WDS
 - Continuous EDS analysis to highlight compositional differences during imaging

- Helios Hydra CX
 - Dual beam focused ion beam SEM
 - Sputtering with Ar, N, O, or N ions
 - Eliminates Ga contamination
 - Improved automation for TEM specimen preparation
Strategic Plan

- MRC focuses enabling the success of materials researchers
 - Utilize center resources to support research
 - SJH office and laboratory space
 - MRC staff (administrative and technical)
 - AMCL equipment
 - Senior investigators and research investigators
 - Provide access to characterization equipment
 - Expert staff, training, and maintenance
 - Increase research activity
 - Enable research through availability of resources
 - Promote teaming and application for major grants
 - Provide seed funding for early-career faculty
MRC Affiliations

- Any students, staff, or faculty can use MRC resources for research purposes
- Senior investigators (SI); about 10
 - Internal advisory committee, senior faculty active in materials research
 - Nominations and selection as needed
 - Base E&E funding from MRC budget (1:1 matching required)
 - Returned F&A for research support expenses (1:1 matching required)
- Research investigators (RI);
 - Investigators with >$10K/yr in shared credit research expenditures
 - Same benefits as Investigators plus returned F&A for research support expenses (1:1 matching required)
- Investigators (I);
 - Any faculty interested in using MRC resources
 - $500 for use of AMCL equipment (1:1 matching required)
 - An additional $500 for untenured faculty (no matching required)
Questions?

• Any questions about MRC can be directed to billf@mst.edu