EMRGe Research Center:
Energetic Materials, Rock Characterization, and Geomechanics

21 Faculty/Investigators
2 Technicians
1 Administrative Assistant
2* Postdocs
15 Graduate students

emrge.mst.edu
Energetic materials

Investigators:
> Dr. Catherine Johnson
> Dr. Kyle Perry
> Dr. Phil Mulligan

Selected research areas:
> Traumatic brain injuries
> Coal dust explosion suppression
> Explosives and Soybeans: Meeting the Need for a more Environmentally Friendly Explosive
> Concrete seals in coal mines

Research capabilities

Traumatic brain injuries
- Assessing blast effects resulting from routine military explosives operations
- Relating observed blast effects to primary blast induced traumatic brain injury (bTBI)
- Diagnosis, prevention, and cure through histology; behavior; MRI scan development; biomarkers etc.

Propellant mixing
- Developing high and low explosive based solid rocket motor propellants
- Characterization testing to maximize safety and performance

Additive manufacturing
- Examining materials to explosive loading
Detonation synthesis
- Detonation as a novel synthesis mechanism for diamonds, diamondoids, and other ceramic nanopowders: SiC, c-BN, BC
- Materials characterization using XRD, Raman Spec., and TEM/SAED

Soybean based explosives
- Less toxic
- Larger particle size (less air travel)

Design and testing of Improvised Explosives
- Explosively formed projectile
- Improvised linear shaped charge
- Buried explosive charges
- Breach charge penetration performance

Armor design
- Vehicle protection from EFPs & buried IEDs
- Light weight ballistic armor
- RPG armor

Simulations of explosive events

Coal dust explosion suppression
- Different rock dust types (wet/dry/hydrophobic)
- Limit respirable dust to workers

Blasting & Highwall stability
- Seismographs and laser scanning

Coal mine seal designs
- Must resist 50-120 PSI explosion
Energetic Materials: center facilities

Explosives and ballistics testing:
- 3+ Blast chambers capable of up to 8 lbs. TNT equivalent
- Experimental mine: – two underground entries with capabilities up to 17 lbs. TNT equivalent. Surface site with capabilities up to 2 lbs. TNT equivalent.

Data acquisition:
- Digital high speed imaging (Phantom HSI)
 - 22,500 frames per second at megapixel resolution
 - Up to 1 Million frames per second at reduced resolutions
 - Monochrome and Color imaging of detonation
- Synergy-P portable DAQ
 - Portable unit with 16 channels sampled at 2 MHz
 - Integrated Electronics Piezo-electric amplification and signal conditioning at 10 mA constant current

Underground surface characterization:
- LiDAR void scanning of subsurface openings
- Real-time modeling/navigation for underground workings

Numerical simulation of explosive events:
- ANSYS
- CTH
- IMPETUS
Rock Characterization

Research areas

- Enhanced oil recovery
 - Polymer flooding
 - Petrophysical characterization of tight oil sands
- Asphaltene precipitation from crude oil during gas injection
- Lake sediment analysis for study of:
 - Climate change
 - Tectonics
 - Biosystems
 - Flooding associated contamination
- Critical minerals: supply chain resilience
 - Linking fundamental geoscientific research to mining industry applications
 - Enhance extraction of rare earth elements
- Engineering characterization and modeling of cementitious materials
- Space mining
 - Heating asteroids to mine water and other volatiles

Investigators:

- Dr. Baojun Bai
- Dr. Mingzhen Wei
- Dr. Abdulmohsin Imqam
- Dr. Jonathan Obrist-Farner
- Dr. Marek Locmelis
- Dr. Ryan Smith
- Dr. Lana Alagha
- Dr. Jenny Liu
- Dr. Leslie Gertsch
- Dr. Weicheng Zhang

MINERS DIG DEEPER
ICDP (International Continental Scientific Drilling Program) workshop on: Lake Izabal Basin Research endeavor

- Co-funded by NSF
- Workshop to be held in Guatemala in 2021
- More than 60 international experts
- Seismic data set by Shell (~$2M)
Rock Characterization research capabilities and collaboration opportunities

Rock core / cement core physical property characterization:
- Porosity, permeability, TOC
- Elastic properties
- Strength properties
- Cement sheath pore pressure (pressure cell system)
- Cement elastic properties (Ultrasonic)
- In situ (downhole conditions) cement core preparation system

Shallow lake sediment core extraction and analysis:
- Contaminant analysis using geochemical techniques
- Earthquake induced sedimentation events
- Paleoclimate reconstruction (pollen, geochemistry, etc.)

Geophysical characterization:
- Towed electromagnetic system (100-500m depth)
 - Incorporate data into groundwater models
- Shallow geophysical characterization
 - GPR, geophone array
- LIDAR
 - Rock surface characterization (joints, fractures)

Geochemical characterization:
- Elemental distribution (SEM)
- Fast- semi-quantitative element analysis (SEM)
- Minor & Trace element analysis (LA-ICP-MS, solution ICP-MS)
- Bulk rock compositional analysis (XRF/XRD)
- Rock mineral identification (digital high-res microscopes)
Rock characterization: center facilities & equipment

Rock preparation equipment:
• Rock saws, crushers, mills
• Core driller
• Rock sample polishing and mineral separation

High Pressure Water jet lab:
• High-precision waterjet cutting
 • depth-cut control
 • surface preparation of many kinds and materials
 • multi-axis milling in mining and manufacturing

• Applicable for:
 • erosion prevention
 • fundamental studies of two- and three-phase flow
 • mechanics of fluid jet generation
 • high speed phenomena
 • physics of fluid impact

Rock strength testing:
• MTS load frame
 • Uniaxial & triaxial compression test
• Direct shear test
• Brazilian strength test (tensile strength)
Geomechanics

Investigators:
> Dr. Taghi Sherizadeh
> Dr. Kwame Awuah-Offei
> Dr. Jeremy Maurer
> Dr. Leslie Gertsch
> Dr. Guney Olgun
> Dr. Xiong Zhang
> Dr. Steve Gao
> Dr. Kelly Liu
> Dr. Andreas Eckert
> Dr. Ryan Smith
> Dr. Weicheng Zhang

Research areas

> Shear wave splitting
 - Mantle flow investigations

> Geodetic (InSAR) data analysis
 - Surface deformation analysis

> Ground control & mining hazards
 - Rib stability in coal mines
 - Ground movement monitoring near excavations using FOS

> Mining equipment – rock interaction

> Geotechnical earthquake engineering
 - Dynamic response of soils

> Warming and thawing of permafrost soil
 - Development of geotechnical hazard map

> Wellbore integrity
 - Assessment of cement sheath failure under in situ conditions
Geomechanics research capabilities and collaboration opportunities

Large scale geomechanics:
• Mantle flow and associated crustal deformation
• Strain localization (seismic, InSAR)
• Earthquakes:
 • Fault stability analysis & seismic hazard
 • Slow earthquakes
• Forward simulation of geologic deformation:
 • Fault kinematics/dynamics
 • Evolution of salt structures
 • Evolution of buckle folds

Reservoir geomechanics (hydrocarbon, aquifer, mines)
• Sedimentation, compaction & overpressure development
• Induced seismicity (waste water, CO₂, geothermal)
• Seal integrity analysis
• Reservoir subsidence
• Wellbore integrity
 • Cement system characterization, testing and simulation
 • Failure prediction

Mining geomechanics
• Slope stability
• Ground control

Constitutive modeling of rock mass behavior
• Theoretical and numerical

Cm to μm geomechanics
• Grain contact interaction & fracture initiation
• Rock fabric characterization, simulation and interaction
• Rock rheology and plasticity

Numerical modeling software capabilities:
• ABAQUS (separate license pool)
• ITASCA suite (FD, DEM)
• ANSYS
• PARAGEO (FEMDEM)
• SedSimX (sedimentological process modeling package)
Rock characterization: center facilities & equipment

Rock preparation equipment:
- Rock saws, crushers, mills
- Core driller
- Rock sample polishing and mineral separation

High Pressure Water jet lab:
- High-precision waterjet cutting
 - depth-cut control
 - surface preparation of many kinds and materials
 - multi-axis milling in mining and manufacturing
- Applicable for:
 - erosion prevention
 - fundamental studies of two- and three-phase flow
 - mechanics of fluid jet generation
 - high speed phenomena
 - physics of fluid impact

Rock strength testing:
- MTS load frame
 - Uniaxial & triaxial compression test
- Direct shear test
- Brazilian strength test (tensile strength)
Why join EMRGe? -- Key resources

Staff

> Jeff Heniff (research engineering technician)
 - Certificate in explosives engineering
 - State of Missouri Licensed Blaster
 - Certified for Royex Explosives

> Jed Nowak (research engineering technician)
 - B.S. in Civil Engineering- US Military Academy, West Point
 - M.S. in Explosives Engineering- S&T
 - Engineer Officer Basic Course, US Army Fort Leonard Wood
 - Trained EMT- Basic
 - FHWA Certified Bridge Inspection
 - Firefighter Certification
 - Registered EIT (Engineer in training)

> Stacey Fuller (Admin Asst.)
Web page, news & outreach, grant administration, grant finances, proposal submission, student contracts & payroll, purchasing, many more

Fully equipped machine shop:
> Providing expertise in mechanical design and fabrication
> “Mobile shop”

MINERS DIG DEEPER
Why join EMRGe? -- Benefits

- Active multi- and interdisciplinary **TEAM** environment → work together on bigger proposals/projects
- Access to equipment, facilities and research support staff time
- Free support from Centre administrative staff
- Collaboration with Centre Post-Doc (Energetics)
- 7% of generated F&A will be invested in EMRGe infrastructure
- 7% of generated CAREER grants (NSF, DOE, NASA) will be returned to PI
- Travel supplements to conferences
- Seminars
- Internal proposal review circle
- Benefit from EMRGe established industry connections