Introduction

Mining roads degrade rapidly requiring maintenance multiple times per week. Large road networks require an automated system to rank road sections most in need of repair. Vehicle response modeling is a preferred method due to both low monetary and time costs.

Model Development

Geographic Model

The model can be applied to a location grid and overlayed on a mine map. Areas in red indicate locations most in need of maintenance. This improves dispatching of maintenance crews to the critical road sections.

Significance

- Health and Safety of operators is improved by reducing whole body vibration
- Green house gas emissions are reduced with increased fuel efficiency
- Total profit is increased with decreased cycle time and reduction in truck maintenance

Conclusions

- Existing models are not sufficient to rank road sections.
- Additional factors (like tire path) can be calculated from existing data.
- Better detection of road defects saves money, reduces injury, and protects environment

Future Work

- Partnership with mine to collect road condition data
- Integrate algorithms for AI deployment using IOT
- Deploy solution for economic testing in operation

Acknowledgements

- Hexagon Mining—Sensors
- La Herradura Gold Mine—Test Location
- Dr Greg Galecki—Advisor